

HCL-003-001529

Seat No.

B. Sc. (Sem. V) (CBCS) Examination

October - 2017

Biochemistry: Paper - 501 (Enzymology)

Faculty Code: 003

Subject Code: 001529

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

1 Answer in **one** sentence only:

 $1 \times 20 = 20$

- (1) Give example of Hydrolase enzyme.
- (2) State full form of IUB.
- (3) In E.C. 4.1.2.2; the digits 4.1 indicates what?
- (4) Hexokinase is an example of which class of the enzyme?
- (5) Give full form of TPP.
- (6) Give role of Substrate analog.
- (7) Define electrophile.
- (8) Name coenzyme involved in hydrogen transfer.
- (9) Why is pH changed in affinity chromatography for elution?
- (10) In which method of separation, mixture of ampholyte containing polyamino acid is used?
- (11) Define dielectric constant.
- (12) Give aim of purification procedure.
- (13) Define zymogen.
- (14) What are Abzymes?
- (15) Where does uncompetitive inhibitor bind?

- (16) What is ordered double displacement reaction also called as ?
- (17) Immobilization of the enzyme increases its half life maximum for how many days?
- (18) Starting material used in brewing is?
- (19) Name the enzyme used in diagnosis of liver diseases.
- (20) Which disease was first treated by the use of gene therapy?
- **2** Answer the following questions:
 - (a) Give answers to any three questions: $2\times3=6$
 - (1) Define isoenzyme
 - (2) Define cofactors.
 - (3) What is the role of dialysis in enzyme purification?
 - (4) Define Positive Himotropic effect.
 - (5) Enlist different techniques of enzyme immobilization.
 - (6) Why Enzymes are not widely used in industries? How can we overcome these drawbacks?
 - (b) Give answers to any three questions: 3×3=9
 - (1) Write a brief note on colloidal nature of enzyme.
 - (2) Write a note on metal ion catalysis.
 - (3) What is the difference between isoelectric focusing and chromatofocusing?
 - (4) Give principle of affinity elution technique and advantages of it over affinity chromatography.
 - (5) Giving example explain random single displacement reaction.
 - (6) Discuss the clinical importance enzyme used in diagnosis of deficiency of enzyme.

 $\mathbf{2}$

- (c) Give answers to any two questions: $2\times5=10$
 - (1) Explain classification of enzyme based on substance hydrolyzed and group involved.
 - (2) Write a note on coenzymes and their roles in biochemical reactions.
 - (3) Write a note on different methods used for separation of enzyme on basis of solubility.
 - (4) Use of enzymes for disease diagnosis.
 - (5) Discuss covalent modification of enzyme glycogen phosphorylase.
- **3** Answer the following questions:
 - (a) Give answers to any three questions: $2\times3=6$
 - (1) Define Katal.
 - (2) Write examples of inorganic cofactors and their significance.
 - (3) State the problems and remedies which arise during homogenization of plant tissues.
 - (4) Draw linweaver plot and label it properly. Give significance of the plot.
 - (5) State two assumptions made to derive MM equation.
 - (6) Give a brief account on 1st, 2nd and 3rd generation biosensors.
 - (b) Give answers to any **three** questions : $3\times 3=9$
 - (1) Write a brief note on multienzyme complex and its significance.
 - (2) Write a brief note on acid base catalysis.
 - (3) Compare biocatalyst with chemical catalyst.
 - (4) Write in brief about dye-ligand chromatography.

- (5) Define competitive, noncompetitive and mixed inhibition and discuss how will you identify it from each other.
- (6) State different factors which lead to increase use of enzymes in industries.
- (c) Give answers to any two questions: $2\times5=10$
 - (1) Explain locate dehydrogenase as an example of isoenzyme.
 - (2) Explain catalysis by proximity orientation and by preferential binding to transition state.
 - (3) Ion-exchange chromatography.
 - (4) Give industrial uses of isolated enzymes in bread and cheese making.
 - (5) An enzyme catalyzes a reaction at a velocity of $20~\mu mol$ /min when the concentration of subtrate (S) is 0.01 M. The Km for this substrate is 1×10^{-5} M. Assuming that Michaelis-Menten kinetics are followed, what will the reaction velocity be when the concentration of S is (a) 1×10^{-5} M and (b) 1×10^{-6} M?